Date: 11/6/18

Chp: Chp.3:3 → Fules for Differentiation

Obj: Apply the rules to differentiate.

Calculus

Pulel: Constant Pule

$$\frac{d}{dx}(c) = 0$$
 ; $c = constant$

$$-Ex: \frac{d}{dx}(3) = 0$$

Pule 2: Power Pule

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$-E_X: \frac{d}{dx} \times = 1 \times = 1$$

- Ex:
$$\frac{d}{dx} x^4 = (4x^3)$$

$$-Ex: \frac{d}{dx} x^2 = (2x)$$

- Ex:
$$\frac{d}{dx}$$
 $x^{-5} = (-5x^{-6})$

Rule 3: Constant Multiple Ryle

$$\frac{d}{dx}(cu) = c(\frac{du}{dx})$$

$$-E_X: \frac{d}{dx} 7x^4 = 28x^3$$

$$-Ex: \frac{d}{dx} 5x^2 = (Dx)$$

Pule 4: Sum & Difference Rule

$$\frac{d}{dx}(u\pm v) = \frac{d}{dx}u\pm \frac{d}{dx}v$$

-EX:
$$\frac{d}{dx}(x^{4}-2x^{2}+2)=4x^{3}-4x$$

 $y=x^{4}-2x^{2}+2$
 $y'=4x^{3}-4x$

Fute 5: The Product Rule

$$\frac{d}{dx}(uv) = v(\frac{du}{dx}) + u(\frac{dv}{dx})$$

$$\rightarrow u'v + v'u$$

-Ex: Find y' of $y = (x^2 + 1)(x^3 + 3)$

$$(2x)(x^3 + 3) + (3x^2)(x^2 + 1)$$

 $2x^{4}+6x+3x^{4}+3x^{2}$

5x4+6x+3x2

Pulc 6: Quotient Pulc

$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \left(\frac{du}{dx} \right) - u \left(\frac{dv}{dx} \right)}{v^{2}}$$

$$\frac{u'v - v'u}{v^{2}}$$

$$\frac{u'v - v'u}{v^{2}}$$

$$\frac{(2x)(x^{2}+1) - (2x)(x^{2}-1)}{(x^{2}+1)^{2}}$$

$$\frac{(2x)(x^{2}+1)^{2}}{(x^{2}+1)^{2}} = \frac{u}{(x^{2}+1)^{2}}$$

Higher-Order Derivatives

- $y'_{f'(x)}$ or $\frac{dy}{dx} = (st) derivative$
- $y_{f'(x)}^{1'}$ or $\frac{d^2y}{dx^2} = 2^{n/2} derivative$
- · y" or $\frac{d^3y}{dx^3} = 3^{rd}$ derivative
- -Ex: Find the first 3 derivatives

Of
$$f(x) = x^{4} - 5x^{2} + 3x + 2$$

 $f'(x) = 4x^{3} - 10x + 3$

$$f''(x) = 4x^2 - 10x +$$

Homework:

P.124 (#1-29 odds, 30, 31-41 odds)

Calculus